Protocol Stacks for Power-Aware Wireless Microsensor Networks
نویسندگان
چکیده
In a distributed wireless sensor system, a need to prolong the lifetime of the network is crucial and limited by battery capacity. As communication traffic among sensor nodes is triggered by sensing events, the network can exploit these time-varying scenarios to obtain power savings by adjusting its operating conditions accordingly. A coherent design of application-specific network protocol stacks is the key. Specifically, embedding poweraware features in the link layer and media access control (MAC) layer promises to extend the lifetime of the sensor network. The power-aware design will be illustrated on μAMPS sensor node prototypes. With the integrated design framework, lower layers of the network stack provides configurable power-aware features to be controlled by higher network layers that maintain broaderview knowledge of the environment. TDMA has been chosen as a MAC Layer protocol for its inherited power-aware mechanism of radio shutdowns outside its TDMA slot and in absence of sensing events. Another level of power-aware features can be deployed in MAC ID and TDMA slot assignments. In a field of scattered sensor nodes, not all the nodes are in radio range of one another or of the base station. Hence, assigning N TDMA slots for the network of N sensor nodes that are not all in radio range will waste the receiver energy and link bandwidth. An algorithm for a re-use of MAC ID and MAC time slot is proposed based on the number of neighboring nodes. Hence, varying the number of neighboring nodes by varying the transmit power can optimize the system lifetime and bandwidth. An implementation of the Link and MAC infrastructure is completed. Power scalability is illustrated on μAMPS node prototypes, with TDMA Media Access and a vehicle tracking application demonstration. Thesis Supervisor: Anantha Chandrakasan Title: Associate Professor, EECS
منابع مشابه
HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks
In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...
متن کاملLEBRP - A Lightweight and Energy Balancing Routing Protocol for Energy-Constrained Wireless Ad Hoc Networks
A wireless ad hoc network typically refers to any set of wireless networks where all devices have equal status on a network and are free to associate with any other wireless ad hoc network devices in their range. As the nature of these networks, they commonly do not have external power supplies, and each node has a limited internal power source. In this paper, we put forward a new routing proto...
متن کاملA Hidden Node Aware Network Allocation Vector Management System for Multi-hop Wireless Ad hoc Networks
Many performance evaluations for IEEE 802.11distributed coordination function (DCF) have been previouslyreported in the literature. Some of them have clearly indicatedthat 802.11 MAC protocol has poor performance in multi-hopwireless ad hoc networks due to exposed and hidden nodeproblems. Although RTS/CTS transmission scheme mitigatesthese phenomena, it has not been successful in thoroughlyomit...
متن کاملEEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks
Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...
متن کاملLow-Power Wireless Sensor Networks
Wireless distributed microsensor systems will enable fault tolerant monitoring and control of a variety of applications. Due to the large number of microsensor nodes that may be deployed and the long required system lifetimes, replacing the battery is not an option. Sensor systems must utilize the minimal possible energy while operating over a wide range of operating scenarios. This paper prese...
متن کامل